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LElTER TO THE EDITOR 

Derrick’s theorem in curved space 

T N Palmer 
Meteorological Office, London Road, Bracknell RG12 2SZ,  Berks, UK 

Received 24 October 1978 

Abstract. A class of scalar field variations is found which strengthen the results of Radmore 
and Stephenson concerning the non-existence of soliton-like solutions of non-linear wave 
equations in a Reissner-Nordstrom background. 

In a recent letter, Radmore and Stephenson (1978) consider the existence of solutions 
to the non-linear Klein-Gordon equation 

cl@ = -if[@] (1) 

in a Reissner-Nordstrom background space. They attempt to find a generalisation of 
the flat space theorem of Derrick (1964), who, by considering a specific variation of @, 
showed that the condition for stability of @ cannot be simultaneously satisfied with its 
equation of motion. 

In this letter it is shown that in a Reissner-Nordstrom background the variation of @ 
given by Radmore and Stephenson is technically unsatisfactory. A suitable variation of 
@ can be found, and for a class of functionals f[@], it is demonstrated that solutions to 
(1) are physically unrealisable. The results strengthen the conclusions of Radmore and 
Stephenson. 

Assume @ is invariant under the isometries of the background space, then (1) 
becomes 

where r- and r+ are the locations of the inner and outer event horizons respectively. 
Equation (2) implies the variational principle 

SE=O (3) 
for the energy E of the @-field exterior to r+. If we write 

m 

ZI = lr+ ( r  - r+)(r - r-)(d@/dr)2 dr 

Z2 = lr+ f l @ ] r 2  dr 
m 

so that 

we require that both 11 and 1 2  should exist. 
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Furthermore, stability of @ requires 

S2E > 0. (7) 

We attempt to find a variation which cannot satisfy both (3) and (7). 
As with standard Lagrangian theory, equivalence between the equation of motion 

and a variational principle inside some volume V assumes the variation vanishes on the 
boundary of V. In the case where the boundary lies at infinity, this requirement is 
mitigated by ensuring sufficient asymptotic boundary conditions on @. Such is the case 
for Derrick’s theorem. 

In Radmore and Stephenson’s paper, however, the 3-volume in which the variation 
takes place is defined by 00 > r 3 r+. Consequently, their variation 

@a ( r )  = @ ( a r )  (8) 

where a is an arbitrary constant, does not vanish on the boundary r = r+ ,  and the 
equation of motion (2) does not give rise to (3). 

For this reason, consider the variation 

@,(r)  = @(ar - (a - l )r+)  (9) 

@a ( r + )  = (10) 

@ , ( T I  = @(ar), r >> r+ (1 1) 

@ , = 1 ( r )  = @ ( r ) .  (12) 

which satisfies 

Equation (10) ensures the variation vanishes on r+, while (1  1)  ensures equivalence with 
(8) at large distances from the event horizon. 

Putting 
m 

E, = 47r [ ( r  - r + ) ( r  - r-)(d@,/dr)2 + f [ @ m ] r 2 ]  dr (13) L+ 
then, using (9), a straightforward calculation gives 

m 

dE,/da ],=I = 47r [ ( r  - r+)2(d@/dr)2 +fl@]r(3r - 2 r + ) ]  dr (14) 
Jl+ 

m 

d2E,/da2),=1 = 897 f [ @ ] ( r  - r+)(3r - r+)  dr. 
Jl+ 

Hence, since Zl exists, (3) and (14) give 

Il+ f[@]r(3r - 2r+) dr  < 0 
m 

while (7) and (15) give 
CO 

fl@](r - r+)(3r - r+)  dr  > 0. 
Jl+ 

Notice that as r + + O  we recover Derrick’s result that (16) and (17) are mutually 
incompatible. 

If fl@] > 0, we are able to confirm Radmore and Stephenson’s conclusion that only 
trivial solutions to (1)  exist. However, we are able to go further than this. If f[@] < 0, 
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then, while (3) is satisfied, the stability condition (7) is not, and again only trivial 
solutions to (1) exist. 

If no restriction on the sign off[@] is made, we may proceed as follows. Since 1 2  

exists, integration of (16) and (17) by parts gives 
00 

(df[@]/dr)r2(r - r+) dr  > 0 

(df[@]/dr)r(r - r+)’ dr  < 0. 

J”r + 

Jr + 

00 

But since 

df[@]/dr = f’[@] d@/dr ( 2 0 )  

then, using ( 2 )  (which implies (18)), (19) becomes 

( 2 1 )  
d d@ ( r - r + ) ( r - r - )  

( r  - r+)’(2r - r- - r+)  dr  + J r : ~ [ ( 2 r )  1 r 
dr < 0. 

Since II exists, the second integral in (21) may be integrated by parts. Collecting 
terms, ( 2 1 )  becomes 

dQ, * ( r - r + ) 2  Ir+ ( dr)  ~ ( r  - 2rr+ + r+r-)  dr  < 0 

so that stability implies 

r2  - 2rr+ + r+r- < 0. ( 2 3 )  

For a maximal black hole (r+ = r - ) ,  (23) is violated and the field is unstable. For a 
regular black hole, there is a small region (2r+ > r > r+ for a Schwarzschild space) which 
gives a negative contribution to (22). 

Hence with no restriction on the sign of f[@] no immediate conclusion can be 
reached as to the stability of 0. 

The author has considered the more general class of variation 

@a(r)=@(r+(a- l )g(r-r+))  (24) 
for arbitrary functions g satisfying g(0) = 0, but cannot strengthen the above results. 
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